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Abstract

Egocentric videos provide valuable insights into human in-
teractions with the physical world, which has sparked grow-
ing interest in the computer vision and robotics commu-
nities. A critical challenge in fully understanding the ge-
ometry and dynamics of egocentric videos is dense scene
reconstruction. However, the lack of high-quality labeled
datasets in this field has hindered the effectiveness of cur-
rent supervised learning methods. In this work, we aim to
address this issue by exploring an self-supervised dynamic
scene reconstruction approach. We introduce EgoMono4D,
a novel model that unifies the estimation of multiple vari-
ables necessary for Egocentric Monocular 4D reconstruc-
tion, including camera intrinsic, camera poses, and video
depth, all within a fast feed-forward framework. Starting
from pretrained single-frame depth and intrinsic estima-
tion model, we extend it with camera poses estimation and
align multi-frame results on large-scale unlabeled egocen-
tric videos. We evaluate EgoMono4D in both in-domain
and zero-shot generalization settings, achieving superior
performance in dense pointclouds sequence reconstruction
compared to all baselines. EgoMono4D represents the first
attempt to apply self-supervised learning for pointclouds
sequence reconstruction to the label-scarce egocentric field,
enabling fast, dense, and generalizable reconstruction. The
interactable visualization, code and trained models are re-
leased https://egomono4d.github.io/.

1. Introduction
Egocentric videos, especially Hand Object Interaction
(HOI) videos, capture a vast amount of knowledge about
human interaction with the physical world, particularly in

1† Work done during the internship at Shanghai AI Lab. ‡ The corre-
sponding author.
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Figure 1. We propose EgoMono4D, a model that unifies the esti-
mation of camera intrinsic, camera poses, and video depth for fast
and dense 4D reconstruction of egocentric scenes. EgoMono4D is
trained solely on large-scale unlabeled videos in an self-supervised
learning framework.

tool usage. Due to this rich source of interaction knowl-
edge, egocentric human videos have gained increasing in-
terest from both the research community (e.g., computer
vision [58, 100] and robotics [51, 96]) and industry (e.g.,
virtual reality [54]).

To better understand the geometry and dynamics in
these activities, a crucial task is the dense 4D reconstruc-
tion from internet-scale egocentric video datasets [15, 23].
Here, dense 4D reconstruction is represented as a point-
clouds sequence which captures the 3D position of ev-
ery pixel in each frame within a global coordinate sys-
tem [45, 84, 86, 99], preserving maximal geometry details.
This task requires: (1) dense per-pixel reconstruction, (2)
the ability to handle dynamic motions in egocentric videos.
To facilitate large-scale usage [15, 90, 96], (3) strong gener-
alization and fast processing speeds are also needed to adapt
to large-scale unseen egocentric scenes.

However, current methods fail to meet these demands.
Traditional methods [64, 77], such as Structure-from-
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Motion (SfM) or SLAM system combined with dense depth
estimation [56, 95], face significant challenges in recon-
structing dynamic scenes. These multi-step approaches also
suffer from accumulated errors and inconsistencies between
different modules [82, 86]. Test-time optimization tech-
niques [32, 35, 46, 98], such as Gaussian Splatting [29], suf-
fer from slow processing speeds, making them impractical
for reconstructing large-scale egocentric datasets [23, 43].
Meanwhile, recent supervised learning approaches, such
as DUSt3R [86] and MonSt3R [99], are limited by the
scarcity of labeled egocentric videos, especially outside of
controlled environments [15, 23].

To address these challenges, we explore an self-
supervised learning approach for fast, dense, and general-
izable reconstruction of highly dynamic egocentric videos.
We propose EgoMono4D, a model trained without ground-
truth labels that simultaneously predicts multiple variables
necessary for dense 4D reconstruction, including camera in-
trinsic, camera poses, and video depth [42, 71].

Our key insight is to extend pretrained single-frame
scene reconstruction model to video version, and align
multi-frame results with 4D constraints. We begin by
estimating per-frame depth and camera intrinsic to gen-
erate per-frame pointclouds predictions. Then, we align
multi-frame results and derive camera extrinsics by mini-
mizing the difference between (1) the 3D scene flow in-
duced by the camera’s motion through a static scene and
(2) pre-computed 3D correspondences, similar to previous
self-supervised methods [71–73, 94]. A confidence mask is
used to exclude dynamic and unreliable areas during multi-
frame alignment. To prevent model collapse and acceler-
ate training convergence, we also regularize the model with
predictions from state-of-the-art off-the-shelf models, such
as Unidepth [56] for depth estimation and EgoHOS [100]
for confidence mask prediction.

We evaluate EgoMono4D in both in-domain and zero-
shot settings on unseen egocentric scenes. The model suc-
cessfully recovers the 3D structure of scenes and the motion
of dynamic parts, even in challenging synthetic surgery HOI
videos [85]. We also provide a quantitative comparison with
baseline methods that offer near-linear time complexity rel-
ative to the number of frames, focusing on two fundamen-
tal 4D tasks: dense pointclouds sequence reconstruction
[71, 86] and long-term 3D scene flow recovery [3, 33, 96].
EgoMono4D demonstrates superior performance on evalu-
ation metrics, outperforming all baseline methods.

In conclusion, our main contributions are as follows:

• We propose EgoMono4D, a model that unifies camera in-
trinsic, camera poses, and video depth estimation for fast,
dense, and generalizable 4D reconstruction of egocentric
videos.

• We introduce a novel self-supervised training method for
egocentric scene reconstruction, training our model solely

on large-scale, unlabeled monocular egocentric datasets,
addressing the challenge of labeled data scarcity.

• EgoMono4D demonstrates promising performance in
both in-domain and zero-shot unseen scenes, surpassing
all baselines in pointclouds sequence reconstruction.

2. Related Works

2.1. (Self-Supervised) Monocular Depth Estimation

Monocular depth estimation has made significant progress
in recent years [61]. Supervised learning models have
shown strong generalization capabilities [4, 6, 25, 56, 88,
93, 95]. Our work builds on UniDepth [56], a state-of-
the-art model that unifies camera intrinsic and depth esti-
mation for single image. Another line of works focus on
self-supervised training [5, 42, 69, 76, 94]. These meth-
ods train depth estimators purely on monocular videos us-
ing photometric error supervision [72, 73], often by lever-
aging camera labels or learning camera predictors. Despite
recent progress, no methods have yet demonstrated strong
generalization across both camera and depth. Our approach
share similar intuition, which also unifies depth and camera
prediction and trained solely on monocular video datasets
[15] with photometric loss. However, our primary focus
is on generalizable 4D reconstruction for egocentric scenes,
which requires zero-shot prediction for both depth and cam-
era parameters. To some extent, our work is the first attempt
to extend self-supervised depth estimation to generalizable
dense pointclouds sequence reconstruction.

2.2. Structure from Motion and SLAM Systems

Structure from Motion (SfM) [14, 64, 65, 103] and monoc-
ular visual SLAM systems [7, 49, 62, 77, 101] reconstruct
3D structures and estimate camera poses from image se-
quences. However, they struggle with dynamic scenes
which pose ill condition for the epipolar constraint [86].
Moreover, most of them typically can not provide dense
pixel-level reconstructions for all frames. Combining vi-
sual odometry [1, 8, 77, 87] with dense depth estimation
[56, 95] helps constrain dynamic parts’ geometry but can
lead to accumulated and inconsistencies errors. Recently,
FlowMap [71] offers a differentiable SfM for static scenes,
optimizing depths, poses, and intrinsic simultaneously. We
adopt its key ideas and extend it to a generalizable version
for dynamic egocentric videos.

2.3. Dense 4D Reconstruction for Dynamic Scenes

Reconstructing 4D dynamic scenes remains a challenging
problem in computer vision. Some approaches [12, 32, 35,
46, 75, 83, 97, 98, 102] first compute vision cues (e.g., cam-
era pose, depth, optical flow) and then perform test-time op-
timization for each scene. While effective, these methods
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Figure 2. The overview of EgoMono4D and our self-supervised training framework. The model first simultaneously predicts camera
intrinsic, video depth, and confidence maps (for camera pose estimation). Camera poses are then calculated by aligning unprojected
pointclouds from different frames with confidence maps. The final dense pointclouds sequence reconstruction is assembled using all the
predicted variables. We train our model purely on unlabeled egocentric video datasets, with both self-supervised photometric loss for depth
alignment and regularization loss for training stablization.

are time-consuming and impractical for large-scale recon-
structions [33].

Concurrent with our work, another line of research
[17, 19, 26, 28, 38, 39, 45, 50, 81, 84, 86, 99] explores
fast, feed-forward 4D reconstruction through supervised
learning. Many of these methods are the extension of
the pretrained end-to-end Multi-View Stereo (MVS) model
DUSt3R [86]. For example, MonSt3R [99] and Stereo4D
[26] fine-tune DUSt3R for dynamic scenes, while Spann3R
[81] and CUT3R [84] incorporate memory buffers for
temporal information merging to avoid post-optimization.
Align3R [45] further enhances geometry estimation by
merging depth priors. However, these methods rely on
ground-truth labels for training, which are scarce for ego-
centric video datasets [34]. In this work, we aim to explore
self-supervised methods [71, 72] for monocular egocen-
tric scene reconstruction, leveraging large-scale unlabeled
video datasets [15] instead.

2.4. Egocentric Video Understanding
Egocentric videos and datasets [15, 20, 22, 23, 34, 37, 43,
54, 85] capture human hand interactions with the environ-
ment, which are critical for robotics [2, 51, 90, 96], vir-
tual reality [54], and intelligent agents [48, 89]. Tasks like
detection [67], segmentation [100], intention recognition
[37, 59], motion prediction [3, 60], and hand-object recon-
struction [55, 57] are commonly used for egocentric videos.
However, dense reconstruction of entire scenes remains a

challenge. EgoGaussian [98] solves this with time-intensive
Gaussian Splatting [29], while our method provides a faster
(> 30x speedup), feed-forward, and scalable solution.

3. Preliminary

3.1. Problem Definition

A monocular egocentric video can be represented as a se-
quence of frames {It ∈ RH×W×3}, where t = 0, 1...T − 1
and T is the total number of frames. Each frame is a RGB
image with a resolution of H × W . Given a video, our
goal is to estimate a sequence of dense pointclouds [86],
{Ŝt ∈ RH×W×3}, which capture the 3D position of ev-
ery pixel in each frame within a global coordinate system.
To achieve this, we decompose the pointclouds sequence
into: (1) video depth {D̂t ∈ RH×W }; (2) camera intrin-
sic K̂ ∈ R3×3 for unprojecting depth into per-frame point-
clouds; and (3) camera poses {P̂t ∈ R4×4} in camera-to-
world format for projecting the per-frame pointclouds into
global coordinates. Then the pointclouds sequence {Ŝt}
could be calculated as:

X̂t = D̂t(i, j)K̂
−1h(p(i, j)) (1)

Ŝt(i, j) = h−1(P̂−10 P̂th(X̂t)) (2)

where (i, j) refers to the pixel position p(i, j), X̂t ∈
RH×W×3 represents the per-frame pointclouds, and h(·)



is the homogeneous operator that adds an extra dimension
with a value of 1 to the coordinate system.

3.2. Camera Pose from Depth Alignment
Following FlowCam [70], we reframe camera pose esti-
mation as a depth alignment and confidence mask pre-
diction problem. This approach transforms the task of pre-
dicting sparse camera parameters into a dense pixel-level
prediction problem, enhancing robustness and generaliza-
tion [71]. Specifically, the model first predicts multi-frame
depth D̂t and camera intrinsic K̂, and then unprojects the
depths into per-frame pointcloudss X̂t. We use an off-
the-shelf model [92] to compute the optical flow between
adjacent frames, denoted as ûi−1,i. The optimal camera
pose transformation should best align the 3D point pairs
induced by ûi−1,i. Additionally, we predict a confidence
mask M̂i,i−1 for frame i to exclude (1) dynamic regions,
(2) occlusions, (3) scene edges, and (4) inaccuracies in op-
tical flow during the alignment process.

Formally, let X̂←i−1
i denote the result of interpolating

X̂i using the points from X̂i−1 (this can be computed based
on ûi−1,i). The best-aligned camera pose transformation
P̂i,i−1 can then be formulated as:

P̂i,i−1 = argmin
P∈SE(3)

||M̂i,i−1(X̂i−1 − PX̂←i−1
i )|| (3)

Then transformation P̂i,j between arbitray frames i and j
could be acquire by chain the nearby-frame results. Solving
Equation 3 is known as the weighted procrustes-alignment
problem [70], which can be solved in closed form using the
singular value decomposition (SVD) [11], allowing a differ-
entiable and learnable camera pose estimation process via
gradient descent [71]. This means that we could get cam-
era pose naturally by only focus on predicting video depth,
camera intrinsic and confidence masks.

4. Methodology
4.1. Overview
We begin with the state-of-the-art pretrained single-frame
scene reconstruction model, UniDepth [56], which predicts
single-frame depth and intrinsic. Our goal is to extend it
to a video-based model with label-free training. To achieve
this, we need to (1) predict camera poses and (2) eliminate
inconsistencies between multi-frame results.

To enable camera poses estimation, we adapt UniDepth
from an image to a video estimator using adaptor blocks
[9, 40]. We also introduce a new decoder to predict con-
fidence masks, facilitating camera poses estimation as de-
scribed in Section 3.2. To eliminate multi-frame inconsis-
tencies, we employ self-supervised training losses based on
4D constraints to align multi-frame results, ensuring both

temporal and spatial consistency in video predictions. The
detailed approach is outlined in the following section.

4.2. Model Architecture
Our model aims to predict (1) video depth, (2) camera in-
trinsic, and (3) confidence masks. Camera poses are then
derivated using multi-frame depth alignment following Sec-
tion 3.2. Our model builds upon UniDepth [56], a universal
estimator for predicting single-frame depth and camera in-
trinsic with an encoder-decoder architecture. More details
about UniDepth can be found in Appendix B. We adopt its
encoder and decoder for image encoding and depth and in-
trinsic prediction. To adapt to 4D video reconstruction, we
introduce two modifications to the UniDepth backbone:

From Image to Video Estimation: To facilitate video
prediction, we use adaptor blocks[9, 40] to extend the orig-
inal image estimator to video version. Our model processes
Nw input images, extracting features from each frame in-
dividually through the encoder. The UniDepth encoder
produces two types of features: (1) DINO [52] features
Fdino ∈ R

T× H
sh
× W

sw
×Ddino , where sh × sw represents the

patch size in DINO and Ddino is the feature dimension, and
(2) global token features Fglobal ∈ RT×Dglobal . To fuse the
features across time, we incorporate multiple adaptors [9].
Global token features are fused using a Transformer [79] on
temporal dimension, while the patched DINO [52] features
are fused using Unet3D [13] on both temporal and spatial
dimension. The architecture for the depth and intrinsic de-
coders remains unchanged from the original UniDepth im-
plementation.

New Confidence Mask Decoder: To enable camera
poses derivation, we need to predict an extra confidence
mask as mentioned in Section 3.2. We add a new confidence
mask decoder adopted from [71], which is a 3-layer MLP
with ReLU [24] activation. The decoder takes a concatena-
tion of (1) fused shallow features from the video adaptors,
(2) depth features and confidence maps from the UniDepth
decoder [56], and (3) an interpolation of the above features,
induced by optical flow [92] from neighboring frames (Sec-
ntion 3.2). A sigmoid function is applied to normalize the
final confidence score within the range [0, 1].

4.3. Self-supervised 4D Reconstruction Losses
Although the new architecture can predict camera intrin-
sics, poses, and video depth simultaneously, these vari-
ants remain inconsistent in both the temporal and spatial
dimensions. To address these issues, we propose an self-
supervised training method that optimizes and aligns these
variants in an end-to-end manner. By leveraging several
4D geometric constraints, we design self-supervised train-
ing losses to enable label-free training. We categorize our
losses into two types: (1) Photometric loss, which aligns
depth, intrinsics, and extrinsics to ensure consistent 4D re-



construction, and (2) Regularization loss, which accelerates
training convergence and helps prevent model collapse.

4.3.1. Photometric Loss from Flow and Track Prior
Similar to previous methods [45, 70, 72, 73, 94, 99], we
use photometric loss to align multi-frame depth estimations.
This also ensures consistency between the camera param-
eters, poses and depth predictions. Specifically, we first
back-project depth and intrinsic into per-frame pointcloudss
X̂i. Then, we align the multi-frame results by minimiz-
ing the difference between (1) the 3D scene flow and long-
term tracking induced by the camera’s movement through
high-confidence areas and (2) pre-computed 3D correspon-
dences (back-projected from the optical flow computed by
GMFlow [92] and long-term tracking by CoTracker [27]).

Formally, suppose i < j, and X̂←i
j is the interpolation

result of X̂j based on the points of X̂i (which can be com-
puted using optical flow or tracking). The alignment mini-
mizes the 3D reprojection error in high-confidence regions
between frames i and j in a scale-agnostic manner, which
can be expressed as:

Lflow/track =
||M̃i+1,iM̃j,j−1(X̂i − P̂j,iX̂

←i
j )||

F (X̂j)||M̃i+1,iM̃j,j−1||
(4)

where F (·) computes the first principal component of the
pointcloudss. We use F (X̂i) as a proxy for the scale of X̂t

and place it in the denominator of Lflow/track to prevent the
pointcloudss from collapsing to a single point. Compared to
widely used 2D photometric loss [71, 72], Lflow/track en-
courages more intuitive 3D consistency in the predictions.

Note we use a pre-computed pseudo-confidence mask M̃
for the photometric loss instead of the predicted mask M̂ ,
since the pseudo-motion mask is able to approximate from
pretrained segmentation model [100] in egocentric video.
The predicted mask M̂ is optimized by backpropagating
Lflow/track through P̂j,i, as described in Section 3.2. Using
M̃ improves model stability and robustness by promoting
more correspondences and preventing M̂ from shrinking
into sparse predictions. The pseudo-mask M̃ is computed
from two sources: (1) Pseudo-dynamic areas, using a hand
and interacted objects mask from EgoHOS [100], which
captures motion from hand-object interactions; (2) Pseudo-
edges, derived from flying pixels [63] based on UniDepth
[56] depth predictions. For the Epic-Kitchen [15] dataset,
dynamic masks are also estimated using epipolar loss [44]
when hands are outside the camera view.

4.3.2. Regularization Loss from Depth and HOI Prior
To stabilize the model training process and accelerate
convergence, we also regularize the training with pre-
dictions from state-of-the-art off-the-shelf models, i.e.,

H2O HOI4D

EgoPAT3DFPHA Epic-Kitchen-1 Epic-Kitchen-2

ARCTIC-HOIPOV-Surgery

Training

Evaluation

Figure 3. Visualization of dataset used for training and evaluation.

Unidepth [56] for depth estimation and EgoHOS [100] for
confidence mask prediction.

Shape Regularization Loss from Depth Prior After pre-
dicting the depth D̂t and camera intrinsic K̂, we first re-
cover per-frame pointclouds X̂t using Equation (1). We
then regularize the shape of X̂t with the prediction X̃t from
UniDepth [56]:

Lshape =
1

H ×W
min
s,R,T

||sRX̂t + T − X̃t|| (5)

Here, (s,R, T ) represents the scaled SE(3) transformation
used for alignment, aiming to enable regularization on a rel-
ative scale [6]. The optimal transformation can be solved in
closed form using SVD [11]. Note that Lshape helps con-
strain dynamic parts of scenes relative to static areas.

Mask Regularization from HOI Prior To speed up con-
vergence, we also regularize the prediction of M̂ :

Lmask = BCELoss(M̂,M̃) (6)

Camera Consistency Self-Supervision We additionally
introduce a self-supervised loss Lcon to enhance the con-
sistency of camera intrinsic predictions. For two frame se-
quences V1 and V2 from the same video clip, we enforce the
intrinsic predictions to be as similar as possible:

Lcon = ||K̂V1 − K̂V2 || (7)

4.3.3. Final Loss Function
Put it together, the final loss is:

L = αLshape+βLflow+γLtrack+λLmask+µLcon (8)

where we set α = 4, β = γ = 5, λ = 1, µ = 0.005 as
loss weights by default to balance each supervision.



HOI4D H2O POV-Surgery† ARCTIC-HOI†

CD ↓ F1 ↑ F2.5 ↑ F5 ↑ CD ↓ F1 ↑ F2.5 ↑ F5 ↑ CD ↓ F1 ↑ F2.5 ↑ F5 ↑ CD ↓ F1 ↑ F2.5 ↑ F5 ↑

DS+UniDepth [77] 6.7 23.2 53.4 79.9 5.1 36.5 75.0 93.2 39.1 7.7 20.0 38.7 2.9 22.2 60.2 84.7
MFVR+UniDepth [1] 8.9 15.4 38.2 68.0 4.7 47.8 81.5 94.2 223.3 3.6 9.6 19.1 5.8 12.6 33.8 63.2
DUSt3R [86] 8.6 24.0 53.2 76.8 8.8 23.1 56.0 82.7 55.4 9.7 24.7 45.1 3.2 20.8 53.7 83.1
MonSt3R [99] 7.6 21.4 50.8 77.9 14.7 15.1 42.4 70.0 94.5 6.5 17.8 34.8 5.4 9.9 31.8 65.0
Align3R [45] 7.1 22.3 53.4 78.9 11.5 20.0 45.4 72.0 41.1 7.9 21.0 40.4 4.5 14.2 41.5 75.8

EgoMono4D (Ours) 5.9 27.9 59.6 83.1 5.1 54.2 83.9 94.4 33.8 13.5 32.0 53.9 2.8 24.1 57.5 86.2

Table 1. The evaluation results for 4D pointclouds sequence reconstruction are presented, using 3D Chamfer Distance (CD, mm) and 3D
Pointclouds F-score (Fδ , %). † indicates zero-shot generalization for EgoMono4D. For ARCTIC-HOI, the evaluation focuses specifically
on the reconstruction quality of the hand-object region. On average, EgoMono4D demonstrates a clear advantage across the metrics.

4.4. Inference Strategy
Finally, we describe the inference strategy for EgoMono4D.
Due to GPU memory limitations, only a limited number of
frames can be processed in a single feed-forward prediction.
However, we can predict videos with infinite frames in a
stream manner using a sliding window. The video is first
split into Nw frames sub-clips with No overlapping frames
between neighbors. Then we predict neighboring windows
independently. Let wi represent the i-th sub-clip, Ei the
timestamp set of wi, and Ŝwi , Ŝwi+1 the predictions for two
neighboring sub-clips. The latter is then then aligned and
concatenated to the former as follows:

(s∗, R∗, T ∗) = argmin
s,R,T

||sRŜwi

Eov
i+1

+ T − Ŝ
wi+1

Eov
i+1

|| (9)

Ŝ[wi,wi+1] = [Ŝwi , s∗R∗Ŝ
wi+1

Ei+1−Eov
i+1

+ T ∗] (10)

where Eov
i+1 represents the overlapping timestamps between

wi and wi+1, and [·, ·] denotes the concatenation operator.

5. Experiments
5.1. Datasets
Figure 3 shows the datasets used for training and evalua-
tion. For more details, refer to Appendix A. Our model
is trained on egocentric videos from H2O[34], HOI4D[43],
FPHA[22], EgoPAT3D[37], and Epic-Kitchen[15]. Each
video is split into 20-frame sub-clips for batch training, to-
taling 11.2 million frames, with the majority (9.7M frames)
from the unlabeled Epic-Kitchen dataset.

For evaluation, we use datasets with pointcloud sequence
labels. In-domain evaluation is done using H2O[34] and
HOI4D[43], with the datasets split by Scene ID to ensure no
overlap between training and test sets. For zero-shot gener-
alization, we use POV-Surgery[85] and ARCTIC[20] (only
Mocap [78] Hand and Objects Interaction (HOI) labels). To
avoid redundancy, we only use the first record from the first
participant in each task. Videos are split into 40-frame sub-
clips for batch evaluation. Note that ARCTIC provides only

hand and object labels, so we refer to it as ARCTIC-HOI to
highlight its focus on foreground HOI reconstruction.

5.2. Implementation Details
We initialize our model with the pretrained UniDepthV2-L
weights[56] and freeze the encoder. For input preprocess-
ing, we resize the images to a resolution of 288 × 384. Dur-
ing training, each data point consists of 4 frames sampled
from each sub-clip, with the interval between frames ran-
domly selected from the range [1, 4]. We employ the Adam
[30] optimizer with a learning rate of 5e-5 and a batch size
of 16. The model is trained on 8 NVIDIA A800 GPUs for
350k iterations. For inference, we set the overlap to 1 frame.
For stability, we set window size Nw = 4 by default, the
same with training process.

5.3. Baseline
We compare our model to previous methods that (1)
provide dense 4D reconstruction, (2) have nearly linear
time complexity with respect to the number of frames,
enabling large-scale reconstruction, and (3) demonstrate
zero-shot generalization. DS+UniDepth (DROID-SLAM
[77] + UniDepth [56]) combines depth estimation with
learning-based RGBD visual odometry. MFVR+UniDepth
(MapFreeVR [1] + UniDepth [56]) first estimates image
depth, then computes camera poses with correspondence
estimation (optical flow [92] in our setting) and depth-
alignment. Additionally, we integrate HOI masks from
EgoHOS[100] to filter out the HOI region for alignment.
This baseline could be viewed as a modularized and no-
training version of EgoMono4D. DUSt3R [86] supports
end-to-end reconstruction. We use the ”swin” mode from
the original implementation to achieve O(T ) inference.
MonSt3R [99] is a finetuned version of DUSt3R on syn-
thetic dynamic datasets, aimed at improving reconstruction
performance in dynamic areas. Lastly, Align3R [45] further
merge depth prior during finetuning to enhance the geome-
try estimation ability.

Since large-scale labeled 4D datasets (with both high-
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Figure 4. The visualization of the dense pointcloud sequence reconstruction by EgoMono4D demonstrates its ability to effectively recover
both the overall scene structure and dynamic motion elements to a significant extent. For additional visualizations, please refer to Ap-
pendix G. We also provide a qualitative comparison and visualization with baseline methods in Appendix H. Video and interactable
visualizations can be found in project website.
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(1 Nvidia GeForce RTX3090 GPU, batch size 1, 40 frames video)

5.982

Align3R

Figure 5. Inference speed comparison of different methods.

quality depth and camera labels) for in-the-wild egocentric
videos are lacking, existing evaluation are limited to small,
lab-based settings [20, 34, 43, 85]. Fine-tuning on these
specialized datasets could lead to overfitting, resulting in an
unfair comparison, since EgoMono4D is trained on large-
scale, in-the-wild datasets and designed for generalization.
To avoid this, and following previous self-supervised depth
estimation works [72, 73, 94], we refrain from fine-tuning
models on lab-based egocentric datasets. Moreover, our aim
is to evaluate how self-supervised methods perform in label-
scarce settings, such as egocentric videos. By excluding la-
bels, we gain clearer insights into how these methods tackle
the inherent challenges of such domains.

6. Result
Here we present the evaluation and ablation results of
EgoMono4D. Detailed definitions of all metrics can be

found in Appendix C.

6.1. Dense Pointclouds Sequence Reconstruction
Task and Metric Dense pointclouds sequence reconstruc-
tion [71, 86, 99] requires the model to reconstruct the
H×W pointclouds of each frame within a global coordinate
system. Since the scale of the pointclouds is ambiguous for
monocular reconstruction, we first apply an estimated glob-
ally scaled SE(3) transformation (s,R, T ) to align the pre-
diction to the ground-truth. We then evaluate the accuracy
of each frame’s shape and average these results as the final
evaluation score. Following [53, 56], we use the 3D Cham-
fer Distance (CD, mm) and the 3D Pointclouds F-score (Fδ ,
%) to assess shape similarity. We use the notation Fδ to de-
note the F-score with a threshold of δ centimeters (cm) as
the positive criterion.

Results The quantitative evaluation results are presented in
Table 1, with visualizations shown in Figure 4. For addi-
tional visualizations, refer to Appendix G. We also provide
a qualitative comparison and visualization with baseline
methods in Appendix H. Video and interactable visual-
ization can be found in project website .

EgomMono4D demonstrates superior performance
across all evaluated methods. Notably, on the challenging
POV-Surgery dataset [85], which contains complex surgical
scenes with unrealistic textures and intricate actions, our
model outperforms others by 10–20% in terms of F-score.
DS+UniDepth also shows commendable performance

https://egomono4d.github.io/
https://egomono4d.github.io/


across several metrics. However, qualitative visualizations
(Appendix H) reveal that it struggles to align the static
portions of egocentric scenes.

The modular version of our model, MFVR+UniDepth,
performs significantly worse across most metrics. This can
be attributed to inconsistencies between the different mod-
ules. In contrast, our end-to-end self-supervised training
(described in Section 4.3) ensures that the modules align
through back-propagation of the 4D supervision loss, lead-
ing to improved 4D reconstruction accuracy.

Due to the limited availability of labeled egocentric
data for training, DUSt3R, MonSt3R and Align3R ex-
hibit suboptimal performance on egocentric videos. Fur-
thermore, fine-tuning MonSt3R on small-scale dynamic
datasets actually results in performance degradation com-
pared to DUSt3R, primarily due to domain gap and over-
fitting. By introducinging depth prior, Align3R alleviates
this issue, but still fails to get precise monocular 4D esti-
mation. These results highlight the challenges that super-
vised learning methods face in label-scarce scenarios. In
contrast, our self-supervised approach performs effectively
on unlabeled egocentric videos. It is important to note that
this does not imply that supervised methods are inherently
inferior to self-supervised ones. In domains with abundant
labeled data, supervised methods may offer advantages, as
demonstrated in depth estimation tasks [61].

6.2. Long-term 3D Scene Flow Recovery
We evaluate different models using long-term 3D scene
flow [80], which captures both the structure and dynamics
of egocentric scenes. Given a video and query points in the
first frame, long-term 3D flow represents the future trajec-
tory of each point in 3D space [33, 96]. EgoMono4D also
outperforms all baseline in this task. Details and results are
in Appendix D, with an prediction example in Figure 4.

6.3. Inference Speed
We evaluate the inference speed of all models (for 40
frames video). All measurements are conducted on a single
NVIDIA GeForce 3090 GPU with a batch size of 1. Results
are shown in Figure 5. Our model achieves the fastest speed,
except for its modularized version (MFVR+UniDepth).

6.4. Ablation Study
We conduct an ablation study of EgoMono4D, training the
model on 280K frames from the training set and testing its
performance on the HOI4D dataset [43]. The variants tested
are as follows: (1) w UniDepth-S: using small version of
UniDepth [56]. (2) w/o V-Adaptor: remove video adaptor.
(3) w α = 1, changing the training weight. (4) w/ midas-
loss: replacing Lshape with depth supervision at a relative
scale [6]; (5) 2d-flow-loss: substituting Lflow/track with its
2D version in pixel space [71]; (6) w/o mask-loss: removing

CD F1 F2.5 F5

complete 6.3 26.9 56.9 81.4

w UniDepth-S 6.5 ↓ 23.8 ↓ 54.5 ↓ 79.2 ↓
w/o V-Adaptor 6.4 ↓ 25.8 ↓ 55.8 ↓ 80.4 ↓
w α = 1 7.1 ↓ 18.2 ↓ 48.3 ↓ 66.4 ↓
w/ midas-loss 6.3 · 26.1 ↓ 56.2 ↓ 80.4 ↓
w/ 2d-flow-loss 6.2 ↑ 26.7 ↓ 57.0 ↑ 81.0 ↓
w/o mask-loss 6.5 ↓ 23.9 ↓ 53.3 ↓ 79.0 ↓
w/o cc-loss 6.3 · 25.2 ↓ 56.4 ↓ 81.1 ↓

Table 2. Ablation study of the EgoMono4D model on the HOI4D
dataset. ↓ indicates performance degradation relative to the com-
plete model, while ↑ indicates improvement. The complete model
outperforms other ablated variants on average.

POV-Surgery
CD↓ F1 ↑ F2.5 ↑ F5 ↑

fps / 1 25.5 14.2 33.3 54.8
fps / 2 25.4 13.8 32.8 54.9
fps / 4 25.2 14.1 33.1 55.1
fps / 12 28.5 13.0 31.0 53.5

Table 3. The POV-Surgery pointclouds sequence reconstruction
results across different frames per second (fps) settings.

the confidence mask regularization loss Lmask; and (4) w/o
cc-loss: removing the self-supervised intrinsic loss Lcc.

Results are presented in Table 2. The complete model
outperforms all other variants on average, demonstrating
the effectiveness of our design choices. From the results,
we observe that mask and depth regularization plays a cru-
cial role in stabilizing training. Additionally, the choice
of the base model is important, and we anticipate that im-
provements in depth estimation will further benefit our self-
supervised scene reconstruction approach in the future. In
terms of shape regularization and photometric loss, apply-
ing constraints in 3D space yields moderately better results
than applying them in 2D space on average.

We also conduct an ablation on the hyperparameters for
model inference, including the window size Nw and win-
dow overlap size No, which are detailed in Appendix E.
For the window size Nw, maintaining consistency between
training and inference is critical, likely because the video
adaptor is specifically trained to fuse 4 frames. Regard-
ing the overlap size No, the model performs comparably
for No = 1, 2, 3. Therefore, we select No = 1 to maximize
inference speed.

6.5. Impact on Video FPS
Since we use random frame intervals to sample data during
training, our model is expected to be robust to variations in
video fps to some extent. We test this on the pointclouds se-
quence reconstruction task using the zero-shot dataset POV-
Surgery [85]. For a 40-frame sub-clip of POV-Surgery, we



select only frames 0, 12, 24, and 36 for evaluation. We de-
fine a 1/x fps video as a frame sequence sampled with an
interval of x (where 12 should be divisible by x). The eval-
uation results are shown in Table 3, and they demonstrate
that our method is robust to changes in video fps within a
certain range. However, when the fps becomes too low, per-
formance degrades, likely because the optical flow module
[92] we rely on may fail under such conditions.

7. Conclusion
We present EgoMono4D, an self-supervised model for 4D
reconstruction of egocentric videos, trained solely on large-
scale unlabeled data. By aligning video depth with 4D con-
straints, it achieves promising zero-shot results in dense,
generalizable scene reconstruction. Additional visualiza-
tion, details, discussion, limitations and future direction
could be found in appendix.
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José MM Montiel, and Juan D Tardós. Orb-slam3: An ac-
curate open-source library for visual, visual–inertial, and
multimap slam. IEEE Transactions on Robotics, 37(6):
1874–1890, 2021. 2

[8] Weirong Chen, Le Chen, Rui Wang, and Marc Pollefeys.
Leap-vo: Long-term effective any point tracking for visual

odometry. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19844–
19853, 2024. 2

[9] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for
dense predictions. arXiv preprint arXiv:2205.08534, 2022.
4

[10] Suhwan Cho, Minhyeok Lee, Seunghoon Lee, Chaewon
Park, Donghyeong Kim, and Sangyoun Lee. Treating mo-
tion as option to reduce motion dependency in unsuper-
vised video object segmentation. In Proceedings of the
IEEE/CVF winter conference on applications of computer
vision, pages 5140–5149, 2023. 22

[11] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
2514–2523, 2020. 4, 5

[12] Wen-Hsuan Chu, Lei Ke, and Katerina Fragkiadaki.
Dreamscene4d: Dynamic multi-object scene generation
from monocular videos. arXiv preprint arXiv:2405.02280,
2024. 2
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Appendix
This appendix file provides:
• A. Details of Datasets
• B. Demonstration of UniDepth Backbone
• C. Details of Evaluation Metrics
• D. Results of Long-term 3D Scene Flow Recovery
• E. Ablation of Inference Strategy
• F. Depth and Camera Results
• G. More Reconstruction Results Visualization
• H. Qualitative Comparison with Baseline
• I. Limitations and Future Directions

For video and interactable visualization, please refer
to the project website.

A. Details of Datasets
Figure 3 in the main paper visualizes samples from various
datasets. Detailed information about the datasets is shown
in Table 4. The data encompass different types of egocen-
tric videos, with variations in camera motion (small/large),
action complexity (simple/complex), and scene conditions
(clean/cluttered).

For training, we use a combination of H2O[34]
(40K frames), HOI4D[43] (540K frames), FPHA[22]
(73K frames), EgoPAT3D[37] (823K frames), and Epic-
Kitchen[15] (9.7M frames). The final training dataset con-
tains a total of 11.2M frames, with Epic-Kitchen dominat-
ing the data (about 85%), providing large-scale diversity
and a wide range of behavior modes. The other datasets
contribute unique scene characteristics or behavior patterns.
For instance, H2O[34] exclusively contains bi-manual op-
erations with small camera motion in clean table scenes.
Approximately 5% of the data is allocated for model vali-
dation.

For evaluation, we note a scarcity of egocentric datasets
offering both high-quality depth and precise camera la-
bels. We strongly encourage the computer vision and HOI
communities to collect or synthesize larger-scale RGBD
datasets with accurate pose annotations. We selected
four datasets that meet the necessary criteria: H2O[34],
HOI4D[43], ARCTIC[20], and POV-Surgery[85]. The
sources for camera labels are provided in Table 4.

H2O[34] and HOI4D[43] feature simple scenes and ac-
tions and are used as test benchmarks for in-domain predic-
tion performance. For zero-shot generalization evaluation,
we use ARCTIC[20] and POV-Surgery[85]. ARCTIC[20]
only provides labels for hands and objects, which is why
we refer to it as ARCTIC-HOI, It is primarily used to
assess the reconstruction quality of HOI. Both ARCTIC-
HOI and POV-Surgery present significant challenges for
EgoMono4D, as they exhibit a large domain gap from the
training data. (1) For ARCTIC-HOI, the hand and object
components occupy a much larger portion of the images

compared to the training data. (2) For POV-Surgery, the
dataset’s unrealistic textures create a substantial visual do-
main gap, and the surgical scenes were not encountered dur-
ing training.

B. Demonstration of UniDepth Backbone

Our architecture builds upon the UniDepth backbone [56],
an encoder-decoder architecture depth estimator. UniDepth
decouples the tasks of depth and camera estimation by
transforming the scene from Cartesian coordinates to a
pseudo-spherical representation, which enables dense cam-
era prediction in spherical space. It then incorporates scene
scale information from the camera prediction into the depth
estimation module using Laplace Spherical Harmonic En-
coding (SHE) and a cross-attention mechanism [16, 79].
For more details, please check out the original paper Pic-
cinelli et al. [56].

C. Details of Evaluation Metrics

We provide the mathematical definitions of the metrics used
to evaluate the performance of 3D point cloud sequence re-
construction and long-term 3D scene flow recovery.

C.1. Metrics for Pointclouds Sequence

We follow Örnek et al. [53] in using 3D Chamfer Distance
(CD, measured in millimeters) and the 3D Pointclouds F-
score (F, measured as a percentage %) to evaluate shape
similarity. For implementation, we leverage the Kaolin li-
brary [21]. Given the ambiguity in the scale of pointclouds,
we first align the predicted point cloud sequence to the
ground truth using an estimated best-aligned global scaled
SE(3) transformation (s,R, T ).

3D Chamfer Distance (CD, mm). Given the predicted per-
frame pointclouds P ∈ RN×3 and the ground-truth G ∈
RN×3, where N is the number of points, the 3D Chamfer
Distance (CD) is defined as:

CD(R,G) =
∑
x∈G

min
y∈R

||x− y||+
∑
y∈R

min
x∈G

||x− y|| (11)

3D Pointclouds F-score (F). The 3D F-score combines
precision and recall to provide a balanced evaluation of the
predicted surface quality. In the context of 3D pointclouds,
precision measures how many points from the predicted sur-
face are close to the ground truth surface, while recall mea-
sures how many ground truth points are captured by the pre-
dicted surface. Given a distance δ as the positive thresh-
old, the precision Pδ(R,G), recall Rδ(R,G) and F-score

https://egomono4d.github.io/


Training

Datasets # of frames Data Split Camera Motion Action Scene Note

H2O 40K Original Split Small Simple Clean Bi-manual
HOI4D 540K Room ID Medium Simple Clean
FPHA 73K Task Medium Complex Clutter
EgoPAT3D 823K Scene ID Large Medium Medium Only pick & place
Epic-Kitchen 9.7M Scene ID Large Complex Clutter

Evaluation

Datasets # of frames Label Camera Motion Action Scene Note

H2O 8K Calibration Small Simple Clean Bi-manual
HOI4D 12K SfM Medium Simple Clean Contain noise
ARCTIC-HOI 13K Mocap Medium Complex Clean Only hand and object label
POV-Surgery 26K Synthesis Large Medium Clutter Unrealistic texture

Table 4. Comparison of Different Datasets for Training and Evaluation

Fδ(R,G) are defined as:

Pδ(R,G) =
1

|R|
∑
y∈R

[dy→G < δ] (12)

Rδ(R,G) =
1

|G|
∑
x∈G

[dx→R < δ] (13)

Fδ(R,G) =
2Pδ(R,G)Rδ(R,G)

Pδ(R,G) +Rδ(R,G)
(14)

C.2. Metrics for Long-term 3D Scene Flow

Long-term 3D scene flow refers to predicting the future tra-
jectories of multiple 3D query points in the pointclouds of
the first frame [96]. Following previous works [3, 33, 96],
we evaluate the precision of 3D flow recovery using three
metrics: Average Displacement Error (ADE, measured in
millimeters), Final Displacement Error (FDE, measured in
millimeters), and Precision under Distance (P, measured as
a percentage %). The 3D flow is generated by interpo-
lating between the predicted and ground-truth pointclouds
based on 2D tracking from CoTracker [27]. Before evalua-
tion, we filter out trajectories affected by noise from flying
pixels [63] using ground-truth depth information. To align
the scale of scenes and the initial position of the 3D query
points, we first perform a best-aligned scaled SE(3) trans-
formation between the ground-truth and predicted point-
clouds for the first frame.

Average Displacement Error (ADE, mm). Given the
predicted 3D flow F ∈ RT×N×3 and ground-truth flow
G ∈ RT×N×3, where T represents the number of frames
and N represents the number of trajectories, ADE measures
the average displacement across all timestamps.

ADE(F,G) =
1

N

N∑
i=1

||Fi −Gi|| (15)

Final Displacement Error (FDE, mm). FDE measures the
displacement of the final timestamp.

FDE(F,G) = ||FT−1 −GT−1|| (16)

Precision under Distance (P, %). The precision metric
measures the average percentage of points with an error
within δ centimeters (cm).

Pδ =
1

N

N∑
i=1

[||Fi −Gi|| < δ] (17)

D. Long-term 3D Scene Flow Recovery Results
Task Long-term 3D scene flow [80] captures both the struc-
ture and dynamics of egocentric scenes in a compact for-
mat, making it valuable for various applications such as per-
ception [68], autonomous driving [47], and robot learning
[18, 66, 96]. Given a video and a set of query points in
the first frame, the 3D flow [33, 96] represents the future
trajectory of each query point in 3D space. Since egocen-
tric datasets lack explicit 3D flow labels, we first employ
CoTracker [27], a high-precision pixel tracker, to generate
2D long-term tracking (with a 35×35 grid of query points).
These 2D trajectories are then unprojected using ground-
truth pointclouds sequence to create 3D trajectory labels.
We use the same method to obtain predictions for models.

Metric To align the scale of scenes , we first perform a best-
aligned scaled SE(3) transformation between the ground-
truth and predicted pointclouds for the first frame. We adopt



HOI4D H2O POV-Surgery† ARCTIC-HOI†

ADE↓ FDE↓ P5 ↑ P10 ↑ ADE↓ FDE↓ P5 ↑ P10 ↑ ADE↓ FDE↓ P5 ↑ P10 ↑ ADE↓ FDE↓ P5 ↑ P10 ↑

DS+UniDepth [77] 64.0 75.1 54.0 82.5 46.4 48.6 67.6 95.0 168.9 199.7 13.2 39.8 53.9 72.1 60.1 86.8
MFVR+UniDepth [1] 88.8 94.8 23.1 69 40.9 42.8 75.8 97.0 504.5 767.6 3.2 13.6 102.0 154.6 33.8 62.0
DUSt3R [86] 79.2 75.8 47.7 75.1 71.7 71.5 54.3 75.9 412.8 407.2 14.8 44.9 214.3 181.6 52.2 82.3
MonSt3R [99] 70.2 71.0 50.7 80.6 96.3 97.1 27.6 67.3 201.8 208.9 8.4 31.8 83.9 106.3 28.4 69.9
Align3R [45] 66.3 67.8 53.4 83.7 75.3 75.5 39.2 79.7 157.6 163.7 14.5 43.1 64.8 83.3 43.8 83.5

EgoMono4D (Ours) 57.3 60.6 59.2 87.0 37.0 38.9 77.0 96.4 125.0 138.9 19.1 55.2 53.8 72.1 57.2 87.3

Table 5. The evaluation results for long-term 3D scene flow recovery are presented, with ADE (mm), FDE (mm), and Precision (Pδ ,
%). † denotes zero-shot generalization for EgoMono4D. For ARCTIC-HOI, the evaluation focuses solely on hand-object recovery quality.
Overall, EgoMono4D significantly outperforms the other baselines.
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Figure 6. The visualization of the long-term 3D scene flow recovery. For clarity, we display only the pointclouds from the first and
last frame. The green arrows representing the estimated 3D flow. EgoMono4D successfully recovers the motion of dynamic parts while
maintaining other regions static to some extent.

(Only for HOI) ADE↓ FDE↓ P5↑ P10↑

HOI4D 79.3 / 76.6 84.6 / 78.4 48.3 / 46.2 77.8 / 81.0
H2O 43.6 / 40.5 45.8 / 41.4 68.6 / 71.2 95.7 / 98.2
POV-Surgery† 196.0 / 192.2 213.4 / 206.4 9.9 / 9.9 32.4 / 32.8

Table 6. Additional long-term 3D scene flow results on the HOI part. Val-
ues are presented in the format ’DS+UniDepth / EgoMono4D (Ours)’.
Both models demonstrate comparable performance, with EgoMono4D
showing a modest advantage.

metrics from related works [3, 33, 83, 96], including Aver-
age Displacement Error (ADE, mm), Final Displacement
Error (FDE, mm), and Precision under Distance (P, %). We

use the notation Pδ to represent precision with a δ centime-
ter (cm) threshold. Details are demonstrated in Appendix C.

Result Table 5 shows that our model outperforms all base-
lines for long-term 3D scene flow recovery on average.
The visualizations are shown in Figure 6. DS+UniDepth
performs well in hand-object motion estimation on the
ARCTIC-HOI dataset. We also compared the HOI estima-
tion of both models on three other datasets, with results in
Table 6. Both models perform similarly, with EgoMono4D
shows a modest advantage. However, DS+UniDepth’s per-
formance drops notably in full-scene estimation (e.g., POV-
Surgery dataset) due to inconsistencies and accumulated er-
rors between modules. Other models perform worse over-



Nw No
HOI4D POV-Surgery

CD↓ F1 ↑ F2.5 ↑ F5 ↑ CD↓ F1 ↑ F2.5 ↑ F5 ↑
4 1 5.9 27.9 59.6 83.1 33.8 13.5 32 53.9

2 1 17.9 11.5 29.4 51.6 / / / /
8 1 6.4 26.0 55.6 80.0 35.2 12.6 30.8 53.1

12 1 6.7 25.1 53.5 78.4 / / / /

4 2 5.9 27.9 59.7 83.1 34.6 13.4 32 53.9
4 3 5.9 27.9 59.7 83.1 35.0 13.4 31.9 53.8

8 4 / / / / 36.3 16.6 30.5 52.6

Table 7. Comparison of pointclouds sequence reconstruction results across different window sizes (Nw) and overlapping sizes (No). Our
model demonstrates robustness to variations in No, while maintaining consistency in Nw between training and inference is essential.

POV-Surgery (Video Depth)

AbsRel↓ δ0.05 ↑ δ0.1 ↑

UniDepth [56] 11.9 40.8 64.7
DUSt3R [86] 19.7 31.5 51.9
MonSt3R [99] 18.6 33.6 52.8
Align3R [45] 13.3 41.7 62.6

EgoMono4D (Ours) 12.6 41.1 63.9

POV-Surgery (Camera Poses)

ATE↓ RPE-T↓ RPE-R↓

DS+UniDepth [77] 9.05 4.17 0.39
MFVR+UniDepth [1] 47.03 4.10 4.18

MonSt3R [99] 6.63 2.41 0.26
Align3R [45] 6.35 2.34 0.23

EgoMono4D (Ours) 11.54 4.01 0.43

Table 8. Result of POV-Surgery video depth and camera poses
estimation. It shows that our model does not outperform others
in estimating these geometric variables. Instead, our model focus
on improving their consistency in 3D space, which leads to better
pointclouds sequence reconstruction.

all. Figure 6 illustrates the estimated long-term 3D scene
flow. It can be seen that EgoMono4D successfully recon-
structs 3D dynamics across diverse scenes.

E. Ablation on Inference Strategy

During inference, our model processes Nw frames in a sin-
gle feed-forward prediction. Theoretically, the window size
Nw can be any value greater than 1. For videos with more
frames than Nw, the overlapping size No between neighbor-
ing windows must also be determined. By default, we set
Nw = 4 (consistent with training) and No = 1 (to optimize
inference speed). We evaluate the impact of Nw and No on
reconstruction performance using the pointclouds sequence

reconstruction task on HOI4D [43] and POV-Surgery [85],
with results shown in Table 7.

For the window size Nw, maintaining consistency be-
tween training and inference is crucial, likely because the
video adapter is trained specifically to fuse 4 frames. Re-
garding overlapping size No, the model exhibits compa-
rable performance for No = 1, 2, 3. Therefore, we select
No = 1 to maximize inference speed.

F. Depth and Camera Results
We further evaluate the video depth and camera poses esti-
mation performance on POV-Surgery [85], using the met-
rics from MonSt3R [99]. The results are presented in
Table 8. Our model does not outperform other methods
in estimating these independent geometric variables. The
depth and camera prediction performance of EgoMono4D
is only comparable with other baseline methods. Instead,
it enhances the consistency of them in 3D space, leading
to improved pointclouds sequence reconstruction results.
UniDepth [56] achieves the best depth estimation, while
Align3R [45] provides the most accurate camera poses.

G. More Reconstruction Results Visualization
We provide more visualization of pointclouds sequence re-
construction results of EgoMono4D in Figure 7. More visu-
alization of recovered long-term 3D scene flows are shown
in Figure 8. Finally, we provide the visualization of inter-
mediate geometric variables in Figure 10.

H. Qualitative Comparison with Baseline
We qualitatively compare EgoMono4D with other base-
line methods on the dense point cloud sequence reconstruc-
tion task. Visual comparisons are presented in Figure 9.
EgoMono4D demonstrates superior performance compared
to baseline methods in both static scene reconstruction and
dynamic HOI motion recovery. DS+UniDepth [56, 77]
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Figure 7. More visualization of pointclouds sequence reconstruction results from EgoMono4D.

struggles with static scene alignment, while MonSt3R [99]
exhibits limitations in accurately reconstructing hand geom-
etry and dynamics.

I. Limitations and Future Directions

While EgoMono4D achieves impressive results in fast,
dense, and generalizable dynamic HOI scene reconstruc-
tion, it still faces challenges with shape misalignment (see

Figure 5 in the main paper). This issue arises from inher-
ent inconsistencies in UniDepth’s [56] shape regularization
and can be divided into two key problems. (1) Dynamic
part (size) distortion: since we only regularize the shape
of the dynamic part based on per-frame pointclouds predic-
tions from UniDepth, the relative size of the dynamic part
compared to the static part is determined by UniDepth’s pre-
dictions. Any inaccuracy in this relative size may be carried
over to EgoMono4D. (2) Static part misalignment: if the
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Figure 8. More visualization of long-term 3D scene flow recovery results from EgoMono4D.
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Figure 9. Qualitative comparison between EgoMono4D and other baseline methods. EgoMono4D demonstrates superior performance
compared to baseline methods in both static scene reconstruction and dynamic HOI motion recovery. DS+UniDepth [56, 77] struggles
with static scene alignment, while MonSt3R [99] exhibits limitations in accurately reconstructing hand geometry.



Figure 10. Visualization of original video It and the predicted procrustes-alignment confidence maps Mt and video depth Dt from
EgoMono4D.

Dynamic Part (Size) Distortion Static Part Non-Overlapping

Failure Case on Epic-Kitchen Failure Case on ARCTIC

Figure 11. Two typical failure cases of EgoMono4D arise from
inherent inconsistencies in UniDepth shape supervision.

original predicted shapes of the static areas from UniDepth
differ significantly between frames, it becomes difficult to
adjust and align them consistently.

Although precise posed datasets are limited, there are
more datasets available with depth labels. Training on these
datasets with ground-truth shape supervision, or using a
combination of labeled and unlabeled datasets, could help
address these issues. Improvements in monocular depth es-

timation and intrinsic parameter estimation may also allevi-
ate these problems.

Another limitation of EgoMono4D is that it currently
supports video reconstruction only for videos with an FPS
above a certain threshold. This is due to its reliance on
the off-the-shelf optical flow estimation module [92], which
may perform poorly with sparse views. Integrating cor-
respondence, matching, or optical flow prediction directly
into the model to enable fully end-to-end training could ad-
dress this limitation [36, 82]. Sparse-view data also needs to
be incorporated during training [86] to solve this problem.

Additionally, our model currently only supports a reso-
lution of 288×384. Training models at higher resolutions
could enable more flexible applications. Our model also
fails when the dynamic portion of the image is too large
or contains too many moving objects beyond the ones be-
ing manipulated. Although we focus on egocentric HOI
scenes, our training paradigm could be extended to more
general cases. We plan to train this general scene model us-
ing motion mask priors derived from motion segmentation



[10, 91], salient video segmentation [74], and semantic seg-
mentation [31, 41]. We also encourage the community to
propose more synthetic datasets [54, 104] to explore super-
vised learning approaches [86, 99].
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